Superior Pathology

How to Collect Tissue Samples for Biomedical Research: 6 Steps

Collecting tissue samples is a crucial process in medical research and diagnostics, requiring precision, expertise, and adherence to best practices to ensure the quality and integrity of the samples. Whether you’re involved in spatial biology, hematopathology, or any other field of medical research, understanding how to collect tissue samples effectively is vital for generating reliable data and advancing scientific knowledge. At Superior BioDiagnostics, we’ve spent years refining our tissue sample collection techniques to support researchers in their quest to improve human health. Let’s dive into the best practices for tissue sample collection, focusing on the importance of meticulous handling and ethical considerations in the process.

The collection of tissue samples is a procedure that involves obtaining a small amount of tissue from the human body for diagnostic or research purposes. These samples are essential for scientific studies, including cancer research, genetic testing, and drug development.

Lab assistant preparing FFPE tissue samples for delivery

Why Quality Matters in Tissue Sample Collection

The quality of tissue samples directly influences the outcomes of research and diagnostic tests. Poorly collected samples can lead to inaccurate results, compromising the validity of a study or the effectiveness of a treatment plan. For instance, how tissue samples are collected can affect the preservation of molecular integrity, which is essential for studies involving DNA, RNA, or protein analysis. For the highest quality results, prioritize the collection of high-quality FFPE (formalin-fixed, paraffin-embedded) human tissue samples. 

6 Important Steps of Tissue Sample Collection

For the success of human tissue research, reputable biobanks offer both normal, malignant, and disease-state tissue samples, including breast, cervical, lung, muscle, uterine, and more. To achieve the highest standards in tissue sample collection, 6 key practices should be followed. These practices ensure that the samples remain viable for research and diagnostic purposes, maintaining their integrity from the point of collection to their final use: 

Step 1: Preparation and Planning

Before collecting tissue samples, it’s essential to plan and prepare thoroughly. This includes understanding the specific requirements of the study or diagnostic tests, such as the type of tissue needed, the size of the sample, and the preservation method required. 

Step 2: Sterilization and Hygiene

Proper planning also involves ensuring that all necessary tools and materials are sterilized and ready for use. All instruments used in the collection process must be thoroughly sterilized to prevent contamination. Additionally, the environment in which the samples are collected should be clean and controlled. This is particularly important in surgical settings where tissue samples are often obtained. 

Step 3: Minimizing Handling

Excessive handling of tissue samples can lead to degradation and contamination. To maintain sample integrity, especially in control samples, it’s crucial to handle tissue samples as little as possible. When handling is necessary, it should be done with care and precision, using tools such as forceps to avoid direct contact with the simple. Minimizing handling is a key principle in tissue sample collection, helping to reserve the biological materials for accurate analysis. 

Step 4: Rapid Preservation

Once the tissue sample has been collected, it must be preserved quickly to prevent degradation. Depending on the type of tissue and the intended use, different preservation methods may be used, such as freezing or embedding in paraffin. Rapid preservation is essential for maintaining the molecular structure of the tissue, which is critical for downstream applications like genetic sequencing or protein analysis. FFPE tissue samples are sustained using a rapid preservation method that is widely recognized for its ability to maintain tissue integrity over long periods. 

Step 5: Accurate Labeling and Documentation

Proper labeling and documentation are vital for tracking tissue samples and ensuring their correct use in research or diagnostics. Each sample should be labeled with detailed information, including the date of collection, the type of tissue, and any relevant patient data (in compliance with privacy regulations). Documentation should also include a clear record of the collection process, storage conditions, and any handling procedures. Accurate labeling and documentation are essential for the success of any study or diagnostic procedure involving tissue samples. 

Step 6: Ethical Considerations

Lastly, ethical considerations are paramount in collecting tissue samples. Before collection, patients or donors must provide informed consent, ensuring they understand the purpose of the collection and how their tissue will be used. Additionally, all tissue sample collection processes should comply with local, national, and international regulations governing the use of human biological materials.

At Superior BioDiagnostics, we are committed to upholding the highest ethical standards in our tissue sample collection practices, ensuring that our work contributes positively to scientific advancement and patient care. How tissue samples are collected can make a significant difference in the success of medical research and diagnostics. By adhering to best practices in tissue sample collection, researchers can ensure the integrity of their samples and the accuracy of their results.

How Tissue Samples Are Collected

Collecting tissue samples is a critical process that requires precision and adherence to best practices to ensure the integrity and usability of the specimens. The method of collection varies depending on the type of tissue, the purpose of the research, and the patient’s condition. 

Tissue collection often involves biopsy techniques, where a small piece of tissue is removed from the body using specialized tools. The approach varies depending on the tissue type. For instance, a needle biopsy uses a hollow needle to extract tissue, often with the aid of imaging techniques like ultrasound or CT scans. In an incision biopsy, a small incision is made to remove part of the tissue, typically used for skin or tumor samples. An excisional biopsy involves the removal of an entire lump or suspicious area for examination, and a surgical resection is used when larger tissue samples are required, often during surgery. 

The samples are then transported under controlled conditions to a biobank like Superior BioDiagnostics, where they are processed and preserved for research or diagnostic purposes. For FFPE samples, the tissue may be prepared for examination in paraffin wax after staining and fixation, making it easier to slice into thin sections for microscopic examination. Strict quality control checks are performed to ensure the sample’s integrity, confirm it is free of contamination, and verify that it meets the specific requirements of the research or diagnostic tests before being released to researchers.

Support Your Next Discovery with Superior BioDiagnostics

Tomorrow’s discoveries demand the latest techniques and best practices for tissue sample collection. Researchers require exceptional samples representative of the biological materials they need for their work. Whether you’re conducting spatial biology research, developing new pharmaceuticals, or exploring innovative diagnostic methods, Superior BioDiagnostics is here to support your efforts with top-tier biospecimen solutions.

The Superior BioDx biobank is dedicated to providing researchers with the highest-quality FFPE human tissue samples sourced and preserved with the utmost care. With a focus on precision, quality, and ethical responsibility, we’ve become a trusted partner for leading scientific facilities and research centers worldwide. Discover high-quality biospecimen services to advance science and enhance human health. Order from Superior BioDiagnostics today to propel your next breakthrough.