Superior Pathology

FFPE Tissue in IHC Research: Exploring Protocols and Best Practices

Formalin-fixed paraffin-embedded (FFPE) tissues play a crucial role in immunohistochemistry (IHC) research, allowing for the precise visualization of specific antigens within tissue sections. The accuracy and reproducibility of IHC results heavily depend on the rigor of the IHC protocol, particularly for FFPE tissues. Let’s dive into the essentials for IHC examination, its protocols, and best practices for FFPE tissues. 

Scientist preparing slides with paraffin embedded tissue samples for immunohistochemistry assay in the laboratory.

Understanding How FFPE Tissues Advance IHC Research

IHC techniques play a pivotal role in modern medical diagnostics and research. According to the Cleveland Clinic, “IHC uses your body’s powerful fighters, antibodies, to expose harmful, microscopic substances that cause disease.” In IHC research, samples undergo immunohistochemical staining to detect specific proteins or antigens. This process is widely used in diagnostics, research, and therapeutic monitoring. The technique leverages antibodies to bind to target antigens in the tissue, with subsequent visualization through chromogenic or fluorescent detection methods. IHC research is critical in FFPE tissue analysis because it allows for clear visualization of specific proteins within the preserved tissue architecture, aiding in accurate diagnosis and research into protein expression. 

Importance of IHC Research in FFPE Tissue Analysis

Immunohistochemistry (IHC) research is crucial in the analysis of various FFPE tissue types because it provides for the visualization and localization of specific proteins within the preserved tissue architecture, aiding in accurate disease diagnosis and research into tissue-specific protein expression. It is a powerful tool for:

  • Diagnosing diseases, particularly cancers, by identifying specific biomarkers.
  • Researching the role of proteins in various biological processes.
  • Evaluating the effectiveness of therapeutic inventions by assessing target protein expression. 

IHC Protocol for Paraffin Embedded Tissue

Formalin-fixed paraffin-embedding is a common method for preserving and preparing tissue samples for IHC research. The process involves several meticulous steps to ensure the integrity and clarity of the stained tissue sections. Trusted biobanks provide high-quality samples, which offer researchers and clinicians a reliable foundation for their research. The IHC protocol for FFPE tissue is broken down by ThermoFisher into 7 primary steps:

Step 1: Tissue Preparation and Fixation 

  • Tissue Collection: Obtain tissue samples and place them immediately in a fixative, commonly 10% neutral buffered formalin.
  • Fixation: Allow tissues to set for 24–48 hours. Proper fixation is critical to preserve tissue morphology and antigenicity.
  • Dehydration and Embedding: Dehydrate tissue through a series of ethanol baths, clear with xylene, and embedded in paraffin. The paraffin blocks can then be sections into thin slices (typically 3-5 micrometers thick) with a microtome. 

Step 2: Sectioning and Mounting

  • Sectioning: Use a microtome to cut thin sections from the paraffin block. Float sections on a water bath to flatten them, and then pick them up with the glass slider. 
  • Drying: Dry the slides to ensure proper adhesion of tissue sections to the slides. Warmer drying temperatures will speed up the adhesion process. 

Step 3: Deparaffinization and Rehydration

  • Deparaffinization: Remove paraffin by immersing slides in xylene.
  • Rehydration: Rehydrate tissues by passing slides through decreasing concentrations of ethanol (100%, 95%, 70%, 50%) and then into distilled water. 

Step 4: Antigen Retrieval and Protein Blocking

  • Heat-Induced Epitope Retrieval (HEIR): Place slides in a retrieval buffer (e.g., citrate buffer, pH 6.0) and heat in a microwave, pressure cooker, or water bath. This step restores antigenicity masked by formalin fixation.
  • Peroxidase Blocking: Incubate slides in 3% hydrogen peroxide for 10 minutes to block endogenous peroxidase activity.
  • Protein Blocking: Use a protein-blocking solution (e.g., normal serum or commercial blocking buffer) to prevent non-specific binding antibodies. 

Step 5: Primary & Secondary Antibody Incubation

  • Antibody Dilution: Dilute the primary antibody in diluent according to the manufacturer’s instructions. 
  • Incubation: Apply the primary antibody to the tissue sections and incubate at room temperature for 1 hour. 
  • Secondary Antibody: Apply a secondary antibody that is conjugated to an enzyme (e.g., HRP) or a fluorophore. 
  • Incubation: Incubate for 30 minutes to 1 hour at room temperature.

Step 6: Chromogenic & Fluorescent Detection 

  • Chromogenic Detection: If using an enzyme-conjugated secondary antibody, apply a substrate-chromogen solution (e.g., DAB) to visualize the antigen-antibody complexes.
  • Fluorescent Detection: If using a fluorophore-conjugated secondary antibody, proceed to counterstaining and mounting. 

Step 7: Counterstaining and Mounting

  • Counterstaining: Stain the tissue sections with hematoxylin to provide contrast.
  • Mounting: Dehydrate the sections again, clear them with xylene, and mount them in a permanent mounting medium. 

IHC Research with FFPE Tissue: Troubleshooting 4 Common Problems

Even with meticulous protocol, issues can arise. The Protein Biology Resource Library reported a few common troubles researchers may encounter during their IHC analysis. Let’s explore these issues and troubleshoot solutions: 

  1. Weak Staining: Weak staining can diminish visibility. Ensure optimal antigen retrieval and check antibody dilutions. Increase primary antibody concentration or incubation time.
  2. Non-Specific Staining: Use a more stringent blocking step or increase the blocking time. Ensure primary antibodies are specific to the target antigen.
  3. High Background: It is important to distinguish the background tissue from the point of interest. Thorough washing between steps is crucial. Consider increasing wash times or using a more effective blocking buffer.
  4. Autofluorescence: Certain preventable factors or the inherent nature of FFPE samples can cause undesirable autofluorescence. This can be avoided by using fluorescence-quelching dyes like Pontamie sky blue, Sudan black, or Trypen blue or by switching to frozen sections. 

Achieving consistent and reliable results during IHC protocols requires adherence to several best practices. Standardizing protocols is crucial; consistent procedures and reagents across all experiments ensure reproducibility and minimize variability. Optimizing antibody conditions is also essential; carefully adjust the concentration and incubation times for primary and secondary antibodies to achieve the best staining results. Validation of antibodies is another key step; new antibodies should be validated with known positive and negative controls to confirm their specificity and sensitivity.

Utilizing Superior BioDiagnostic’s FFPE Tissues for IHC Analysis

IHC analysis of FFPE tissue is a powerful technique for visualizing specific antigens within tissue samples, offering valuable insights for diagnostics and research. With high-quality samples from Superior BioDiagnostics, researchers and clinicians can achieve clear, reliable results. Whether you’re diagnosing diseases, conducting research, or evaluating therapeutic interventions, the precision of your FFPE tissue for IHC protocols is vital to unlocking the full potential of immunohistochemistry. Order your normal, malignant, and disease-state samples with Superior BioDx today!